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Midterm Exam
Date and Time: 03/06/25 (Thursday) 11:30am-12:45pm (75 mins)

Location: TI Auditorium, ECSS 2.102

Topics: first 12 lectures

Question Types: multi-choice, short answer, and long answer questions

Policy
• Closed-book test. But you are allowed one A4 page (single page) of handwritten notes
• No calculators, cell phones, or any kind of internet connection are allowed
• Talking and discussion are prohibited
• Please space yourselves so that students are evenly distributed throughout the room. There should be no 

one directly next to you
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Supervised Learning
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Convolutional Neural Networks

4

Input image

Convolutional
layer

Fully connected layer

Output vector

ReLU
layer

Pooling
layer

…

(translation invariant)



Image Classification

ImageNet dataset
• Training: 1.2 million images 
• Testing and validation: 150,000 images
• 1000 categories
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https://image-net.org/challenges/LSVRC/2012/index.php

https://image-net.org/challenges/LSVRC/2012/index.php


Image Classification
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Image Classification

Training data

One-hot vector: if an object in k-th class exists in the image, its label 
will be encoded as [0, 0, 0, …, 1, …, 0, 0, 0], where only k-th element in 
the vector is 1
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Image Classification

8

0 1 m-1

……

Ground truth1

0 1 m-1

…

1

The goal of training



Image Classification

Cross entropy loss function
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Cross entropy between two distributions
(measure distance between distributions)
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https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/



Training

Cross entropy loss function
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Minimize

With respect to weights W



Training

Gradient descent

Chain rule
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Learning rate



Training

Gradient descent 
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How to compute gradient?



Training

Chain rule
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Jacobian matrix

https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/


Training

Gradient descent
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Learning rate



Back-propagation
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Back-propagation
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Conv filter Bias
Simplified convolution computation 



Training: back-propagate errors
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Back-propagation

For each layer in the network, compute local gradients (partial 
derivative)

• Fully connected layers
• Convolution layers
• Activation functions
• Pooling functions
• Etc.

Use chain rule to combine local gradients for training
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Classification Loss Functions

Cross entropy loss

Hinge loss for binary classification
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Classification Loss Functions

Hinge loss for multi-class classification
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Score 
corresponds to 
the ground truth 
label

Score 
corresponds to 
the most wrong 
label

margin

https://torchmetrics.readthedocs.io/en/stable/classification/hinge_loss.html



Regression Loss Functions

Mean Absolute Loss or L1 loss

Mean Square Loss or L2 loss
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Regression Loss Functions

Smooth L1 loss
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https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html



Optimization
Gradient descent

• Gradient direction: steepest direction 
to increase the objective

• Can only find local minimum

• Widely used for neural network 
training (works in practice)

• Compute gradient with a mini-batch 
(Stochastic Gradient Descent, SGD)
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Learning rate



Optimization
Gradient descent with momentum

• Add a fraction of the update vector 
from previous time step (momentum)

• Accelerated SGD, reduced oscillation
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https://ruder.io/optimizing-gradient-descent/

Learning ratemomentum

https://ruder.io/optimizing-gradient-descent/


Adam: Adaptive Moment Estimation
1. Exponentially decaying average of gradients and squared gradients

2. Bias-corrected 1st and 2nd moment estimates

3. Updating rule

Optimization
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Adaptive learning rate

Start m and v from 0s

Learning rate



Further Reading

Stanford CS231n, lecture 3 and lecture 4, 
http://cs231n.stanford.edu/schedule.html

Deep learning with PyTorch
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.ht
ml

Matrix Calculus: https://explained.ai/matrix-calculus/
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http://cs231n.stanford.edu/schedule.html
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://explained.ai/matrix-calculus/
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